Experiences from PT-WFD proficiency tests on polybrominated diphenylethers and alkylphenols

<u>Ulrich Borchers</u>*, Friedrich Werres (IWW Water Centre, DE), Michael Koch, Frank Baumeister (AQS-BW, DE)

Istanbul, 06th October 2011

IWW RHEINISCH-WESTFÄLISCHES INSTITUT FÜR WASSER BERATUNGS- UND ENTWICKLUNGSGESELLSCHAFT MBH

Topics

- Scope of the PT-WFD Network
 - Objectives and Parameter Spectrum
 - Sample Matrix and Concentrations
 - Performance Requirements
- PT on Polybrominated Diphenylethers
 - Specific problems
- PT on Alkylphenols (and Bisphenol-A)
 - Specific problems
- Conclusions

Objectives of the PT-WFD network

Specially designed for EU Water Framework Directive Purposes (WFD)

- Important statement of the EU Commission:
 - The implementation of the WFD requires the design of monitoring programmes ensuring
 - the reliability and
 - comparability of monitoring data
 - Including traceability aspects
- The QA/QC Commission Directive 2009/90/EC requires that
 - monitoring labs demonstrate their competence by participation in suitable PT programmes
 - 🛬 covering all relevant analytes
 - in relevant matrices (surface waters)
 - at concentrations representative for WFD

QA/QC Commission Directive (2009/90/EC)

- Standardised and other validated methods
- Requirements on analytical methods
 - Validation according to EN ISO 17025
 - **Limit of Quantification (LOQ)**
 - ≤ 30 % of the relevant EQS
 - Relative Target Uncertainty at EQS level
 - **■** ≤ 50 %
 - (EQS = Environmental Quality Standards)
- If there is no EQS or no method that meets the performance criteria
 - best available techniques
 - not entailing excessive costs

Benefits of the harmonisation of PTs

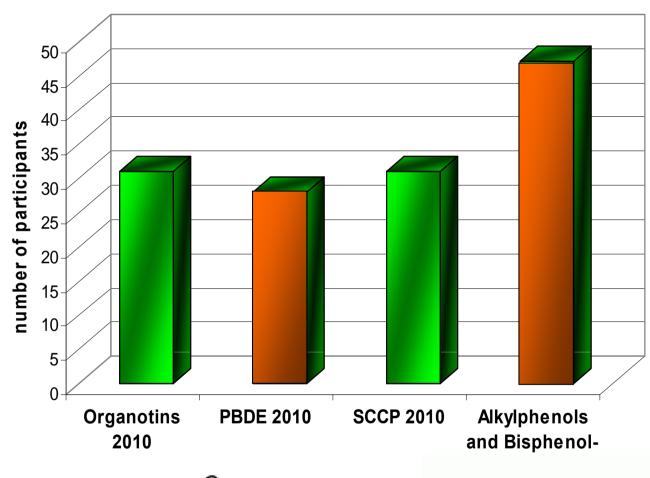
- Comparability of monitoring data obtained throughout Europe
- Access to relevant PTs also by labs in smaller countries
 - Some trace analytes are analysed just by very few labs in each country
- Decreasing costs of test samples
- Know how transfer
- Regular survey of gaps and initiation of new developments

Essentials and unique features.....

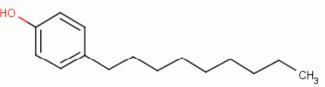
- Analysis of whole water samples
 - Containing particles (SPM) up to 500 mg/l
 - Analytes may be bound to the solid phase
 - non-polar (sorptive) substances
- Real or spiked real samples
- Very low concentrations
 - due to challenging EQS values
- Priority Substances according to WFD
 - Complex analytical requirements
 - Some standardised methods not adapted to the requirements (fitness-for-purpose?)
 - Relation between limits and methods for sum/consensus parameters

.... are causing specific problems in PTs

- Preparation of homogeneous samples with SPM
- Insufficient extraction of samples
 - Due to poor method description
 - Due to poor experience of labs
- Lack of method sensitivity
- Divergencies between Limit (EQS) and analyte definition

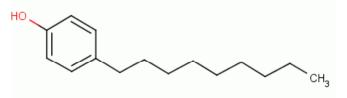

Topics

- Scope of the PT-WFD Network
- Objectives and Parameter Spectrum
 - Sample Matrix and Concentrations
 - Performance Requirements
- PT on Polybrominated Diphenylethers
 - Specific problems
- PT on Alkylphenols (and Bisphenol-A)
 - Specific problems
- Conclusions



Examples from PT rounds 2010

$$Br_m$$
-- Br_n



Examples from PT rounds 2010

	AA-EQS [ng/l]	PT concentration range [ng/l]
Priority Substances		
2,4,4-Tribromodiphenylether (BDE 28)	0.5	0.8-9
2,2,4,4-Tetrabromodiphenylether (BDE 47)	0.5	1-11
2,2,4,4,5-Pentabromodiphenylether (BDE 99)	0.5	1-12
2,2,4,4,6-Pentabromodiphenylether (BDE 100)	0.5	1-10
2,2,4,4,5,5-Hexabromodiphenylether (BDE 153)	0.5	1-11
2,2,4,4,5,6-Hexabromodiphenylether (BDE 154)	0.5	1-10

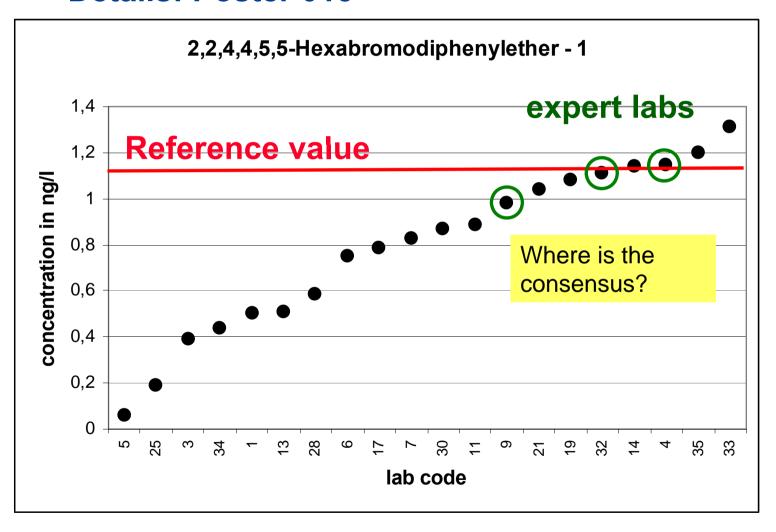
Matrix and other relevant information

Matrix

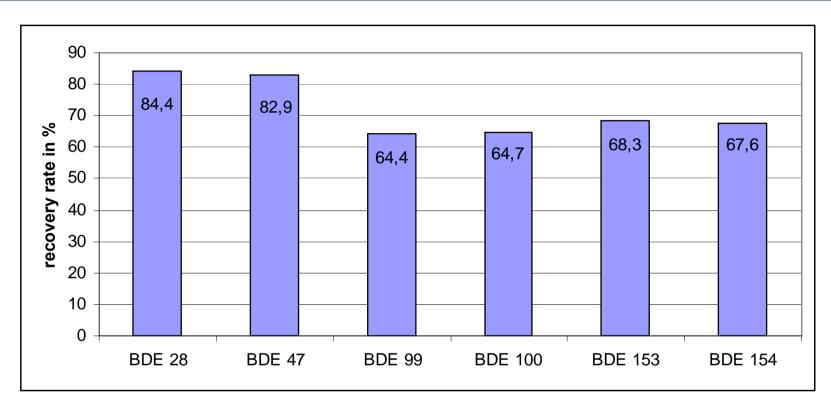
- Filtered surface water
 - 5 μm and, 1 μm, UV radiation
 - Particles smaller than 1 µm not removed
- 3 x 2 different surface water samples at three concentration levels in 1 L ground glass bottles
- Sample preservation by cooling
- Methods
 - No standardised method for water
 - Liquid-liquid extraction (LLE)
 - HRGC-MS and HRGC-MS/MS

Evaluation according to Network agreement

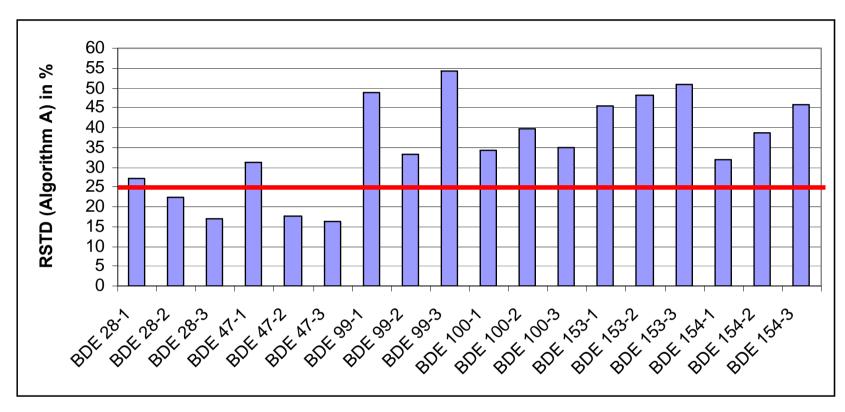
- Assigned value X:
 - Consensus Mean or
 - Reference value (spike + matrix content)


- Standard deviation for proficiency assessment (SDPA):
 - 0,25 x X
 - This means 25 % RSD
- Assessment:

Example – BDE 153, Level 1


Details: Poster 013

Recovery rates

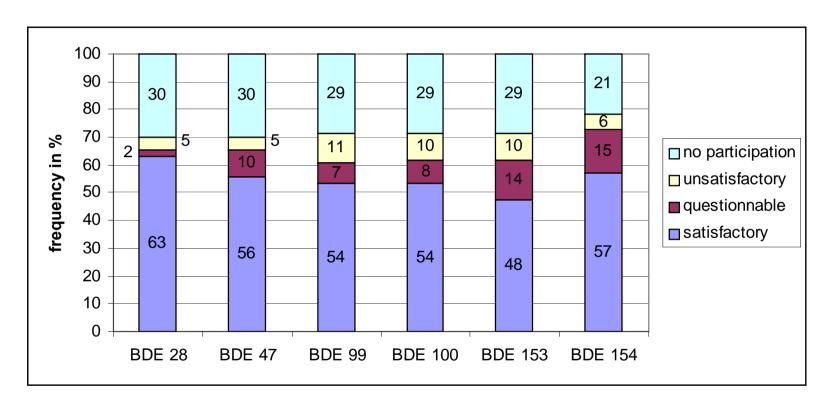


- Reasons for low recoveries:
 - Incomplete extraction of Penta- and Hexa-PDBE
 - Due to poor method description?
 - Due to poor experience of labs?
 - Due to general problems with the extraction of non-polar compounds?
- Important information for the future development of methods

Relative standard deviation

Problem:

- Significantly higher standard deviations for Penta- and Hexa-BDE
 - In some cases double as high as limited SDPA (25%)

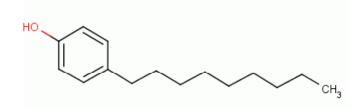

Reason:

Wide range of extraction efficiency

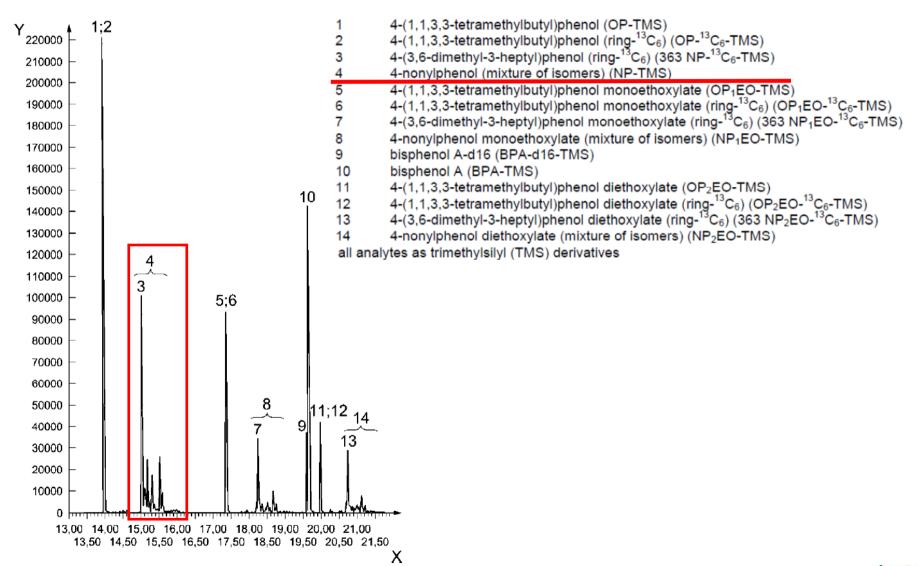
Assessment of the values

Number of theoretical possible values: 84

Topics

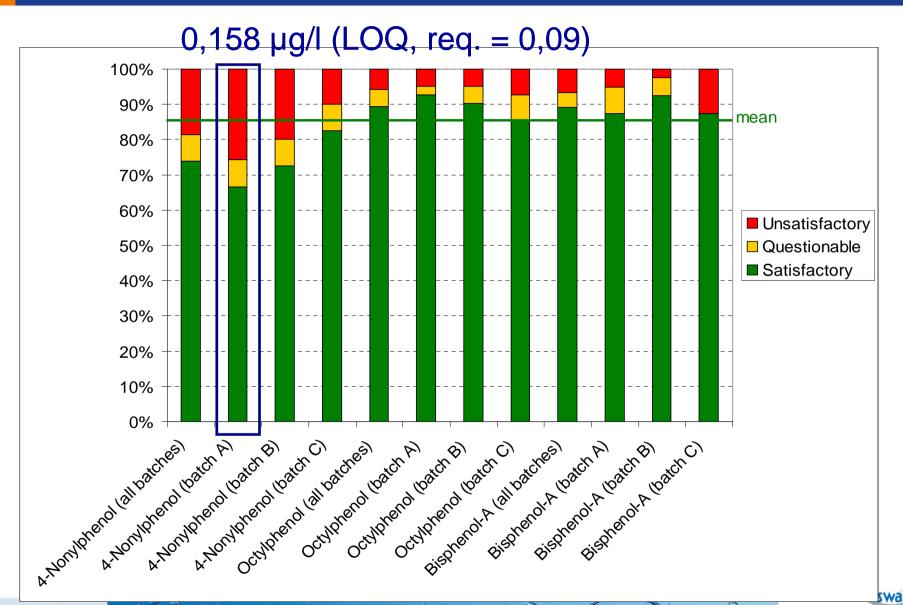

- Scope of the PT-WFD Network
- Objectives and Parameter Spectrum
 - Sample Matrix and Concentrations
 - Performance Requirements
- PT on Polybrominated Diphenylethers
 - Specific problems
- PT on Alkylphenols (and Bisphenol-A)
 - Specific problems
- Conclusions

EQS for Nonylphenols acc. to EQS Directive (2008/105/EC)

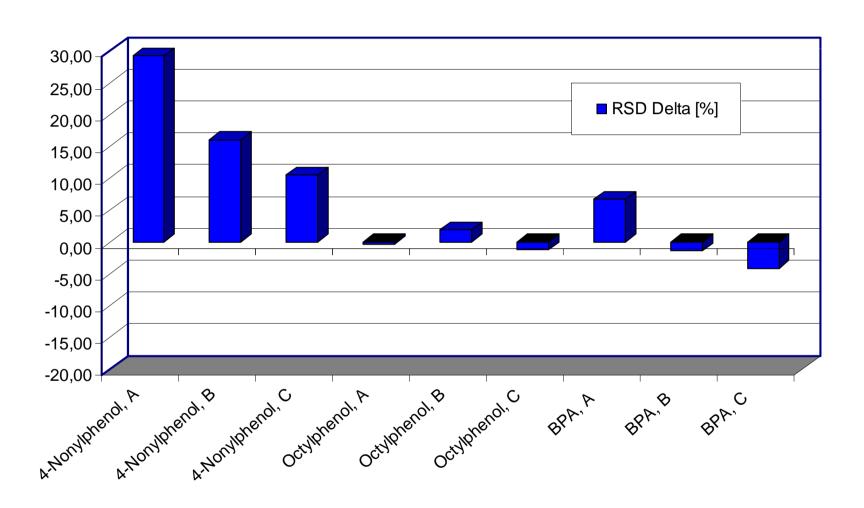

Parameter ^{a)}	AA-EQS [µg/l]	Required LOQ [µg/l]
(24) (4-nonylphenol) (CAS 104-40-5)	0,3	0,09
(25) Octylphenol (CAS 1806-26-4)	0,1	0,03

4-Nonylphenol, a mixture of isomers!

The problem of precise definitions


4-Nonylphenol

- 4-Nonylphenol is a <u>mixture of branched isomers</u> used in technical products
 - Hence, the parameter is a conventional parameter
 (→ sum parameter)
- This is not fully clear in the EQS directive (DIRECTIVE 2008/105/EC)
 - The parameter is called 4-Nonylphenol
 - The CAS number represents 4-n-Nonylphenol
 - The non-branched isomer
 - The correct CAS number reads 84852-15-3


Assessment of the values

Calculated RSD in comparison with the agreed SDPA (25%)

Topics

- Scope of the PT-WFD Network
- Objectives and Parameter Spectrum
 - Sample Matrix and Concentrations
 - Performance Requirements
- PT on Polybrominated Diphenylethers
 - Specific problems
- PT on Alkylphenols (and Bisphenol-A)
 - Specific problems
- Conclusions

Conclusions

- PTs for WFD purposes are still rare and complex
 - Due to the high requirements (QA/QC ComDirective)
 - whole water samples (containing SPM)
 - very low concentration range
 - limited uncertainty (→ SDPA = 25%)
- It is essential that the PT provider
 - properly evaluates the data
 - carefully checks whether the reference value can/has to be used
 - contributes to the enhancement of the methods
- Specific problems with conventional parameters (sum parameters) have to be addressed
 - in the communication with participants
 - to the authorities (legislators)

Many thanks to the co-operating PT providers

